Angiotensin II directly stimulates activity and alters the phosphorylation of Na-K-ATPase in rat proximal tubule with a rapid time course.

نویسندگان

  • Douglas R Yingst
  • Katherine J Massey
  • Noreen F Rossi
  • Madhumita Jena Mohanty
  • Raymond R Mattingly
چکیده

We present evidence that Na-K-ATPase in the rat proximal tubule is directly activated by ANG II much faster than previously observed. Specifically, we show that a 2-min exposure to 0.1 and 1 nM ANG II slowed the rate of intracellular sodium accumulation in response to an increase in extracellular sodium added in the presence of gramicidin D. From these data, we show that ANG II directly stimulates Na-K-ATPase activity at rate-limiting concentrations of intracellular sodium. Under these same conditions, exposing proximal tubules to ANG II altered the amount of 32P incorporated into multiple phosphopeptides generated from a tryptic digest of the alpha-subunit of Na-K-ATPase. Na-K-ATPase was isolated from whole cell lysates by means of a ouabain-affinity column and then separated into its individual subunits by SDS-PAGE. Na-K-ATPase bound to the column in its E2 conformation and was eluted by altering its conformation to E1 using Na+ATP. Na-K-ATPase isolated from cells treated with ANG II eluted more easily from the ouabain-affinity column than Na-K-ATPase isolated from control cells, suggesting that ANG II decreased the affinity of Na-K-ATPase for ouabain. Thus ANG II rapidly stimulated the activity of Na-K-ATPase in 2 min or less by a mechanism that could involve changes in phosphorylation and conformation of Na-K-ATPase. We suggest that the physiological role for rapid direct activation of Na-K-ATPase is greater control of intracellular sodium during sodium reabsorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiotensin stimulates bicarbonate transport and Na+/K+ ATPase in rat proximal straight tubules.

The effect of angiotensin on HCO3- absorption, fluid absorption, and Na+/K+ ATPase activity in isolated rat proximal straight tubules was investigated. During the control period, tubules absorbed fluid at 0.66 +/- 0.12 nL/mm.min and bicarbonate at 60.2 +/- 10.7 pmol/mm.min. After 10(-10) M angiotensin was added to the bath, tubules absorbed fluid at 0.93 +/- 0.19 nL/mm.min and bicarbonate at 77...

متن کامل

Angiotensin II stimulates vesicular H+-ATPase in rat proximal tubular cells.

Two mechanisms of H+ ion secretion in the proximal tubule that mediate bicarbonate reabsorption have been identified: the brush border Na/H exchanger and electrogenic H+ ion secretion. Angiotensin II (AII) has been shown to be a regulator of the luminal Na+/H+ exchanger and the basolateral Na+/HCO3- cotransporter. In the present study, we examined the effects of AII on H+-ATPase activity in iso...

متن کامل

Negative reciprocity between angiotensin II type 1 and dopamine D1 receptors in rat renal proximal tubule cells.

Sodium excretion is bidirectionally regulated by dopamine, acting on D1-like receptors (D1R) and angiotensin II, acting on AT1 receptors (AT1R). Since sodium excretion has to be regulated with great precision within a short frame of time, we tested the short-term effects of agonist binding on the function of the reciprocal receptor within the D1R-AT1R complex in renal proximal tubule cells. Exp...

متن کامل

Contrary to rat-type, human-type Na,K-ATPase is phosphorylated at the same amino acid by hormones that produce opposite effects on enzyme activity.

Renal sodium homeostasis is a major determinant of BP and is regulated by several natriuretic and antinatriuretic hormones. These hormones, acting through intracellular secondary messengers, either activate or inhibit proximal tubule Na,K-ATPase. It was shown previously that phorbol esters and angiotensin II and serotonin induce the phosphorylation of both Ser-11 and Ser-18 of the Na,K-ATPase a...

متن کامل

Activation of D4 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells.

The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal angiotensin type 1 (AT1) receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubule cells from Wistar-Kyoto (WKY) rats, but the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 287 4  شماره 

صفحات  -

تاریخ انتشار 2004